SEEDS Technology Infusion Study

Second SEEDS Public Workshop

Capability Vision and Technology Infusion Process Breakout Session Summary

- □ Background (15 min)
 - > Overview of SEEDS technology study, ESE vision, etc.
 - > Reference material for working session
- □ Capability discussion (40 min)
 - > Write down individual thoughts on capabilities
 - > Group discussion highlight one per person
- □ Breakout session instructions (5 min) 2 groups: mission / applications focus
- □ Breakout session (2 hr + 15 min break)
 - > Barriers
 - Related prototypes
 - > Trends
 - Capabilities
 - > Vision development forum
 - Vision representation
 - > Technology infusion barriers
 - > Technology infusion strategies

Breakout Results Summary

- □ Good participation...thank you!
 - > 35+ active participants
- Identified many important elements of (inputs to) a SEEDS vision
 - ➤ 49+ capabilities
 - ➤ 12+ specific features
 - > 18+ current barriers to reaching ESE goals
 - > 26+ prototypes of relevant technologies
 - > 32+ technology/science/application trends
 - > 5 barriers to technology infusion
 - > 2 recommendations on vision representation
- Details of input and recommendations on following slides
 - ➤ Lightly summarized results
 - Input from "mission" and "applications" focus groups is provided on separate slides where applicable

Capabilities - Group Discussion Results

What new or improved capabilities are needed in ESE data systems over the next 10 years?

- 1. Access
 - > Info not Data
 - Expert guidance for users ("Ask Jeeves"), Interactive access,
 - Better web services, Semantic web, domain semantics,
 - > Catalog-to-data seamless access, content-based search
- 2. Data Services
 - > Tools to identify and resolve missing data
 - > Reduce search result set
 - Automated intelligent QA
 - > Support seamless data fusion
 - Data models to support emerging data collection (nano-tech, non-gridded)
- 3. Distribution
 - > Store compressed data objects, subset on compressed file to deliver
 - > Subscribe and deliver to where you are (mobile access, eg to PDA)
 - Output multi-formats (format transparent to user)
- 4. Tools
 - Building tailored processing chains (on-the-fly)
 - High level data manipulation language for custom data products (from multi sources)
 - > Event recognition without reprocessing or new metadata
 - Adapt tools to commercial products, COTS environments
- 5. Automated Ops, System "always up"
- 6. Design
 - Simplicity, avoid "gratuitous complexity"
 - > Alternatives to firewall, security transparency

- What technical problems hinder your work?
- Considerations
 - 1. Hard to combine disparate data for more sophisticated models, interdisciplinary research, and applications
 - 2. Cannot obtain data within 45 minutes of overpass to support weather model initialization
 - 3. Cannot easily access NASA data sources from commercial software products
- □ Check
 - > Does your list cover all missing technical capabilities that prevent us from achieving the 2025 ESE vision/goals now?

Barriers - Applications Focus Results

What technical problems hinder your work?

- 1. Slow data access-limited bandwidth or data chunks too big
- 2. Security issues
 - Awkward implementations of policy
 - Irrational/simplistic policies (e.g., block all access)
 - > Immature authentication technologies esp. for distributed systems
 - Data access and services not tailored to different users "one size fits all" design results in restrictive policies
- 3. Rapid change of technology and cost of porting/migrating apps
- 4. Disparate data models across various communities
- 5. COTS product and infrastructure issues
 - Platform/OS incompatibilities
 - > COTS product interdependencies
 - Slow to support new mission data formats
 - > COTS products not providing advertised functionality
- 6. Poor system designs
 - > Generalized solutions do not meet special needs
 - Specialized solutions so not meet general needs
- 7. Knowledge gap between Earth science and computer science
 - Need new computational Earth science field?

Barriers - Mission Focus Results

What technical problems hinder your work?

- 1. Security firewalls, next gen networks (will security hinder data access?)
- 2. Management of multiple goals quick response and equity considerations (competing goals without software to support conflict resolution)
- 3. Bandwidth (point-to-point as well as space-ground); capacity lacking to fuse from multiple sources to satisfy higher-level needs; commercial tech drivers fall exceed NASA need
- 4. Technology evolution align, adapt; too many goals => difficult to satisfy all uses
- 5. Automated systems are too manual
- 6. Near-line archives inadequate for needs; volumes too high
- 7. User model unknowable (changing); want interface to access knowledge; need easier to interface to subset of interest; need to rus user scripts on server side

- What leading-edge prototypes do you think demonstrate capabilities that should be made pervasive in the SEEDS era?
- Considerations
 - 1. MODster & DODster: Distributed, Decentralized MODIS Data & Services
 - 2. Standards Framework in Support of Dynamic Assembly of NewDISS Components
 - 3. Universal Interchange Technology for Earth Science Data and Services (UNITE)

Related Prototypes - Application Focus Results

- 1. SRB + Data Grid
- 2. OGC Web services testbed
- 3. ESML
- 4. Echo
- 5. OpenDAP (DODS) ... and all other ESIP activities presented in plenary
- 6. Conquest
- 7. Resource Description Framework
- 8. XML Topic Maps
- 9. Grid prototypes
- 10. Fortezza cards
- 11. RapidFire
- 12. D2K data mining package
- 13. GloViz @ EDC
- 14. Global Broadcast System
- 15. Data pools

Related Prototypes - Mission Focus Results

- 1. Data Grid, service broker
- EOSDIS as a prototype interdisciplinary definitions, lessons learned, user patterns, examples of tough problems solved
- 3. Near-archive data mining

- 4. Interview science teams, DAACs, how is SEEDS improved?
- 5. NVO National Virtual Observatory
- 6. Microsoft Terraserver has analogous system
- 7. REALM lessons learned form Sam Goward/UM
- 8. Simulation modeling in Hollywood
- 9. TV News ability to pull video footage for breaking news reports
- 10. Commercial digital archives
- 11. Sony game playing distributed architecture and visualization

- What current trends do you think foretell the most important changes to user requirements and system designs in the SEEDS era?
- Considerations
 - 1. LAN services → Internet services
 - 2. Data poor → Data rich (volume & variety)
 - 3. Central processing → End-user processing
 - 4. Single discipline science → Multi-disciplinary science/apps
 - 5. High-latency data for research → Low-latency data for apps (e.g., weather)

Trends - Application Focus Results

- 1. Offline \rightarrow near line \rightarrow on-line interactive
- 2. Simple data access → value-added services
- 3. Focused research community \rightarrow broad application user communities
- 4. Leading edge technology focus → usable technology focus
- 5. Dumb sensors → Smart sensors
- 6. Single downlink → direct broadcast
- 7. Centralized → distributed (cluster computing, grid computing)
- 8. Higher end-user computing capability
- 9. Single purpose systems → multipurpose systems (research + applications) a la NPOESS
- 10. Planned data products \rightarrow on demand data product generation
- 11. Slow networks → fast networks
- 12. Wired → Wireless apps

Trends - Mission Focus Results

What current trends do you think foretell the most important changes to user requirements and system designs in the SEEDS era?

- 1. Cheaper on-line storage
- 2. Bandwidth may get more expensive compared to storage
- 3. Processing on-board satellites
- 4. Outsourcing services/equipment
- 5. Look to commercial service providers (use developing standards to plug-in)
- 6. More server-side processing
- 7. Distributed (mobile) services
- 8. Smaller specialized services (chained together)
- 9. Computation: SETI computational model (leverage unused CPU cycles); Sony/game playing models
- 10. Visualization: ESE data role in entertainment/real time games (Sony)
- 11. Coupled data (real-time stream) with large model outputs
- 12. Charging for data
- 13. Space technologies slow to evolve compared to intelligent ground technologies

Capabilities (Revisited) - Application Focus Results

- What new or improved capabilities are needed in ESE data systems over the next 10 years?
 - 1. Ability to produce higher level products over distributed systems (e.g., distributed FFT) and other new architectures
 - 2. Refined security mechanisms
 - 3. Levels of service on servers to handle broader set of users
 - 4. Flexible/adaptable interfaces systems provide value to engage end-users earlier
 - 5. Automated near-real-time event detection
 - 6. Faster data ingest
 - 7. Separate ingest from distribution

Capabilities (Revisited) - Mission Focus Results

- What new or improved capabilities (not already captured in the group discussion) are needed in ESE data systems over the next 10 years?
 - 1. Improved security management
 - 2. Tools for management of multiple (conflicting) goals
 - 3. Shipping code
 - 4. Outsourcing of network services
 - 5. Optimized mission planning
 - 6. Get on the Grid

- □ What specific new features are needed in ESE data systems over the next 10 years to enable the capabilities you identified?
- Considerations
 - 1. ArcInfo and IDL plug-ins that provide direct access to DAAC holdings
 - 2. Near-real-time data delivery of low-quality data subsets (images) over a limited area (implies prioritized vs. FIFO processing)
 - 3. Ability to order a data product based on the content of another data product (e.g., high-res data over fires detected in low-res data)
- □ Check
 - Does your list address all needed capabilities?

Features - Application Focus Results

What specific new features are needed in ESE data systems over the next 10 years to enable the capabilities you identified?

- 1. Direct broadcast
- 2. Parallel taps into raw or processed data stream to deliver data to special-purpose plug-in application services w/ near-real-time capabilities
- 3. Ability to do quality/timeliness trades (note: AVHRR available 2 hrs after overpass)
- 4. Prioritization by user or user type
- 5. Strong user identification
- 6. Resource usage monitoring
- 7. General data pools (limited depth pools for user algorithms)
- 8. Data debit cards
- 9. Intelligent data subsetting (much more than FTP)
- 10. Partial data decompression
- 11. Data fusion
 - Semantic understanding of the data (esp. resolutions)
 - > Swath + Uniform grid + vector
 - Co-registration
 - Enabling third-party services/products that can be vetted by the users
 - > COTS tools understand metadata and can make certain automatic transformations/warnings
- 12. Better insight into different qualities of similar datasets

Features - Mission Focus Results

- □ What specific new features are needed in ESE data systems over the next 10 years to enable the capabilities you identified?
 - 1. Knowledge representation, extraction, and access tools
 - 2. User interfaces much simpler (partner with commercial developers)
 - 3. Modules that work together
 - 4. Defining rules for transforming query to next level
 - 5. Population knowledge repository discipline-specific level
 - 6. Classifier of data into knowledge
 - 7. Ontology/namespace

- How should the vision for ESE data systems be represented?
- Considerations
 - 1. List of features/benefits
 - 2. Future user scenarios
 - 3. Thematic diagram/picture
 - 4. Goal system architecture
 - 5. Tell a story (video w/ animation, interviews, etc.)

Vision Representation - Mission + Application Focus

How should the vision for ESE data systems be represented?

- 1. Recommend "Tell a story" (animated, short movie)
 - Start with ESE 2020 vision animation but address the role of the observatory data systems
- 2. Scenario storyboard with multiple user perspectives
 - Mission user/scientist with "direct" access
 - Graduate student researcher with access via value-added tools working within COTS
 - Commercial customers with access via value-added providers
 - Ordinary citizen making quiries (eg, directly from their tractor)
- 3. Convey themes
 - SEEDS enables development of new products and services but does not make new products
 - Metric of success commercial use of SEEDS standards, technology solutions
 - Demonstrate ability to connect data to sspecific user needs as needs evolve
- 4. Different formats for different audiences
 - All formats under "considerations" are viable

Technology Infusion Barriers - Application Focus

What are the barriers to infusing new technology into current ESE data systems?

- 1. Different priorities between developers and operations
- 2. Lack of modularity
- 3. Systems not open by design
- 4. COTS interdependencies
- 5. Intellectual property issues- will the source be available? Bureaucratic release processes

Technology Infusion Strategies

- What strategies can be used to ensure technologies are readily incorporated into operational ESE data systems?
- Considerations
 - 1. Collaborative funding for technology customers to incorporate successful research prototypes into operational systems
 - 2. Sponsor activities connecting technology developers with technology customers
 - 3. Explore partnering opportunities
 - 4. Standardize key interfaces
- (Note: topic not covered in the workshop due to time constraints)

